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Abstract: One of the landmark achieve-
ments of quantum chemistry, specifically
of MO-based methods that include elec-
tron correlation, was the precise calcu-
lation of the barrier for the hydrogen-
exchange reaction (B. Liu, J. Chem.
Phys. 1973, 58, 1925; P. Siegbahn, B.
Liu, J. Chem. Phys. 1978, 68, 2457). This
paper reports an accurate calculation of
this barrier by two recently developed
VB methods that use only the eight
classical VB structures. To our knowl-
edge, the present work is the first accu-
rate ab initio VB barrier that matches an

experimental value. Along with the ac-
curate barrier, the VB method provides
accurate bond energies and diabatic
quantities that enable the barrier height
to be analyzed by the VB state correla-
tion diagram approach, VBSCD (S.
Shaik, A. Shurki, Angew. Chem. 1999,
111, 616; Angew. Chem. Int. Ed. Engl.
1999, 38, 586). This is a proof of principal

that VB theory with appropriate ac-
count of dynamic electron correlation
can achieve quantitative accuracy of
reaction barriers, and still retain a com-
pact and interpretable wave function. A
sample of SN2 barriers and dihalogen
bonding energies, which are close to
CCSD(T) and G2(�) values, show that
the H3 problem is not an isolated case,
and while it is premature to conclude
that VB theory has come of age, the
occurrence of this event is clearly within
sight.
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Introduction

The acceptance of quantum mechanics by chemists was aided,
among other events, by a few landmark achievements. In 1927
Heitler and London (HL) published their seminal paper[1] on
the origins of the chemical bond in the H2 molecule, using
Heisenberg×s resonance approach.[2] Even though not quanti-
tatively accurate, the HL wave function for the first time
provided a physical mechanism for bond formation between
two neutral atoms, due to the quantum-mechanical interfer-
ence effect called resonance energy. The HL wave function

formed the foundation of the valence bond (VB) theory of
Slater[3] and Pauling[4] and, especially due to the work of the
latter, it became a powerful tool that explained most of the
known chemistry of the time.[5] At about the same time,
Hund[6] and Mulliken[7] formulated a spectroscopy-based
method, called molecular orbital (MO) theory, which ac-
counted for a multitude of spectral observations: the magnetic
properties of the dioxygen molecule,[8] the rotational barriers
of olefins,[9] the properties of conjugated molecules,[10] and so
on. These pioneering VB and MO treatments suggested that
the whole of chemistry would naturally emerge from quantum
mechanical principles. However, the quantitative aspects of
the methods were still unsatisfactory, and a quantitative proof
of the validity of quantum mechanics was required.
The H2 molecule was a good benchmark case. VB theory

could be improved by adding ionic structures to the HL wave
function,[11] but the results were still some way from quanti-
tative accuracy. MO theory with a single determinant gave
even worse results than the HL wave function, but it could be
improved by configuration interaction (CI). CI brought to the
fore the notion of electron correlation, which eventually
culminated in the wave function of James and Coolidge
(JC),[12] giving highly accurate results for the bond energy and
other properties of the H2 molecule. This second landmark
achievement demonstrated that a quantum mechanical meth-
od that accounts properly for electron correlation is capable
of predicting molecular properties with an accuracy that
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matches, if not surpasses, experimental accuracy. This was a
proof of principle that quantum mechanics correctly and
accurately describes the nature of the chemical bond.
The next landmark was the calculation of the barrier for the

simplest chemical reaction that describes bond exchange, the
identity hydrogen transfer [Eq. (1)].

H�H � H . � H . � H�H (1)

An early VB treatment of this reaction by London[13a]

showed that VB theory can account qualitatively for the
entire potential surface. This VB treatment was generalized
by Eyring and Polanyi,[13b] and eventually led to the develop-
ment of a useful parametrization scheme for generating
potential energy surfaces. Still, though, quantitative accuracy
of reaction barriers was beyond the reach of VB theory. By
contrast, MO-based treatments with extensive CI, initially by
Liu et al.[14] and by Truhlar and Horowitz,[15] gave a highly
accurate barrier for the hydrogen-exchange reaction. Liu×s
computational data are still widely used for global analytical
potential energy surfaces. Subsequent computational work by
Peterson et al.,[16] Bauschlicher et al.,[17] Anderson et al.,[18]

and again Peterson et al.[19] further substantiated the results of
this pioneering study. This work demonstrated that quantum
mechanics was also able to account most accurately for a key
quantity that determines the speed of a chemical reaction.
With these three landmarks it has become apparent that, in
principle, chemistry has entered under the sovereignty of
quantum mechanics.
In the interim, MO and MO-CI theories have been going

from one achievement to another and establishing the validity
of quantum mechanics. It is unanimously accepted that MO-
based theory with electron correlation correction is the
method of choice for the calculation of molecular properties
and especially of reaction barriers. In contrast, VB theory, the
one that was the first to achieve the landmarks of describing
the chemical bond and the reaction barrier, has been receding
and almost fading out as a quantitative method. Despite the
resurgence of VB methods since the early 1980s,[20] and the
insight this theory provides into chemical reactivity,[21] it is still
considered to be inferior toMO-based methods, primarily due
to quantitative aspects. The bond energy challenge has
already been met by VB theory, and accurate bond energies
may be obtained by VB treatments such as the breathing
orbital VB method (BOVB).[22] However, highly accurate
reaction barrier calculations are still challenging for VB
theory. When this challenge is met, VB theory will finally
come of age, and the addition of quantitative accuracy to its
chemical lucidity will form a formidable theoretical tool in the
service of chemistry. Meeting this challenge is an important
goal of modern quantum chemistry, and is part of our own
program. This work represents a step towards this goal.
The most valuable feature of a VB wave function is its

chemical lucidity: the fact that it maintains a very clear
correspondence between the VB eigenfunctions and the
chemically common Lewis structures for a given electronic
system. For this correspondence to hold, it is necessary to
employ VB methods that make use of pure AOs that are
strictly localized on a single atom or fragment, without any

delocalization tails to other atoms. This feature is also
required for the calculation of the diabatic curves used in
the VBSCD diagrams (vide infra). The VBSCF method of
Balint-Kurti and van Lenthe[23] is appropriate for this purpose,
but its accuracy is still wanting. The BOVBmethod,[22] devised
to improve the accuracy of VBSCF while keeping its
conceptual simplicity and interpretability, is also appropriate.
Finally, some of us recently introduced a VB-based method,
called VBCI, that incorporates the CI technique and philos-
ophy into VB wave functions, while conserving the lucidity of
the wave function, in terms of a minimal set of constituent VB
structures.[24] In this form, the method enables quantitative
accuracy to be obtained with a wave function based on the
classical VB structures. While BOVB has already been tested
for its ability to reproduce bond energies, and similar tests are
reported in this work for the VBCI method (vide infra), the
question is whether the BOVB and/or VBCI methods can also
meet the greater challenge of an accurate calculation of a
reaction barrier with a minimal set of VB structures.
To answer this question we decided to compute the barrier

of the hydrogen exchange reaction,[14±19, 25±33] in Equation (1),
in an attempt to duplicate the landmark achievement of
Liu,[14] and to analyze the constitution of the thus calculated
precise barrier by use of the VB state correlation diagram
model, at a highly accurate level.[21] Although this challenge
may seem unimpressive in comparison with the current
capabilities of MO-based methods, this is not the case for
VB theory. Thus, an earlier VB study by Harcourt and Ng,[34]

used the STO-6G basis set, and arrived at a barrier of
23.6 kcalmol�1. Our own BOVB study,[35] with the 6 ± 31G
basis set, gave a barrier of 18.7 kcalmol�1, almost twice the
true classical barrier of around 9.8 kcalmol�1.[14±19] The
challenge of accuracy facing the VBCI and BOVB methods
is therefore not trivial. As shall be seen, the VBCISD method
meets the quantitative challenge, and at the same time
provides the means to produce basis set-independent diabatic
energy curves and accurate VB parameters of VB state
correlation diagram for the hydrogen exchange reaction.[21]

The computational results show that VB theory is not only a
powerful tool for qualitative understanding but also able to a
good approach for quantitative applications.

Results and Discussion

Methodology

The VBCI method : The VB calculations use a spin-free
formulation of VB theory, which has been fully described
elsewhere.[36, 37] In spin-free VB theory, a many-electron wave
function is expressed in terms of spin-free function �K. �K

� �
�

K

CK�K (2)

may be a bonded tableau (BT)[37] state that maintains a one-
to-one correspondence with the chemical VB structures.
In the VBSCF method,[23] both the VB orbitals and the

structural coefficients are optimized simultaneously to min-
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imize the total energy. The VBSCF method takes care of the
static electron correlation. However, it lacks dynamic corre-
lation,[22] which is absolutely essential for the goal of
quantitative accuracy. The VBCI method[24] uses a config-
uration interaction technique to improve the energetics after
a VBSCF calculation in which all the fundamental VB
structures are involved [Eq. (3)].

�VBSCF �
�

K

CSCF
K �0

K (3)

A subsequent VBCI calculation[24] involves all the funda-
mental and the excited VB structures. This includes double
excitations on each atom, plus products of single excitations of
two atoms. In Equation (4), the structures are indexed by the
superscript i, which can correspond to a fundamental (i� 0) or
a virtual VB structure (i�0).

�VBCI �
�

K

�

i

CKi�i
K (4)

Here, excited structures are nascent from their fundamental
structure through replacement of occupied orbital(s) with
virtual orbital(s), keeping the same spin-pairing. To preserve
the interpretability of the final wave function, the virtual
orbitals are defined, by use of a projector, so as to be strictly
localized on precisely the same atom as the corresponding
occupied orbitals. This form of the virtual orbitals conserves
the nature of the fundamental VB structures. In this manner,
one does not add new VB structures, but rather dresses the
fundamental structures, found at the VBSCF stage, with
dynamic correlation. The total VBCI energy of the system is
given by Equation (5).

EVBCI �

�

K�L

�

i�j

CKi CLj��i
K�H��j

L�
�

K�L

�

i�j

CKi CLj��i
K��j

L�
(5)

Since the virtual orbitals for each fundamental structure are
localized on the same atoms as in the fundamental structure,
the entire VBCI wave function can be written in terms of the
fundamental structures. The weight of a given VB structure is
given by the usual Coulson ±Chirgwin formula[38] in Equa-
tion (6).

wK � C2
K �

�

K�L

CKCL ��K ��L� (6)

The CI can be truncated at any desired level. Thus, single
excitation of all the fundamental orbitals leads to the VBCIS
method, while double excitation corresponds to VBCISD.
Thus, the method can be gradually improved to the desired
accuracy. Practical experience with the method shows that
going beyond double excitation is usually not necessary. For
this purpose one may resort to perturbational summations,
but that is beyond the scope of the present paper. Fortunately,
unlike the MO-based CISD, the VBCISD method is free of
size inconsistency effects.[24]

The BOVB method : The BOVB method is another way of
improving VBSCF by accounting for some dynamic correla-
tion. Relative to the minimal set of VB structures of the
VBSCF wave function [Eq. (3)], BOVB does not perform any

extra CI, but improves the description of the VB structures by
allowing different orbitals for different structures. The
method has been described in detail elsewhere[22] and is only
very briefly summarized here. The basic principle is that each
VB structure is allowed to possess its specific set of orbitals,
different from one VB structure to the other, during the
optimization process. The orbitals and coefficients of the VB
structures are optimized simultaneously so as to minimize the
total energy of the multistructure wave function. In this
manner, the orbitals can fluctuate in size and shape so as to fit
the instantaneous charges of the atoms on which these orbitals
are located. In this work, the BOVB method is used at two
levels of accuracy. The most basic level, L-BOVB, displays a
very compact three-configuration wave function for H2, just
involving the three classical VB structures–one covalent and
two ionic–and each ionic structure is described as a unique
doubly occupied AO on the anionic center. Extension of this
description to the H3 system yields an eight-configuration
wave function, each configuration (spin eigenfunction) cor-
responding to one of the VB structures 1 ± 8 displayed in
Scheme 1.

Scheme 1. The VB structure set for H3.

With respect to this simple level, the more sophisticated SL-
�-BOVB level brings two improvements: 1) an ionic structure
is now described as two singly occupied AOs that are singlet-
coupled, but localized on the same ionic fragment, this
improvement bringing radial correlation energy to the ionic
structures, and 2) VB structures corresponding to the �

bonding of H2 are added to provide some angular correlation.
Previous experience has shown us that such VB structures are
not entirely negligible in diatomic molecules such as H2, Li2,
etc.

The VB structure set : The minimal set of VB structures
required to describe the hydrogen exchange reaction is shown
in Scheme 1. These structures involve all the modes of
distribution of three electrons among the three hydrogen
atoms. Structures 1, 3, and 5 correspond to the reactants
(Ha�Hb � Hc), and structures 2, 4, and 6 correspond to the
products (Ha � Hb�Hc). Structures 7 and 8 are excited states
that can mix only into the TS but do not contribute to the
reactants and products.[35]
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The VB state correlation diagram (VBSCD) method : The
VBSCD[21] method uses VB theory to provide chemical
insight into the barrier and other features of a chemical
reaction. The diagram, shown in Figure 1, is composed of
three curves: one is the adiabatic energy profile of the ground
state involving all eight structures in Scheme 1, and the other
two are the reactant and product curves, also called diabatic

Figure 1. VBSCD for the hydrogen exchange reaction.

curves. The diabatic curves are variational within the subset of
VB structures,[22f] structures 1, 3, and 5 for reactants and 2, 4,
and 6 for products.[35] In a nutshell, after construction of these
three curves, the barrier can then be analyzed in terms of the
diabatic quantities. These are the promotion gap,G, the height
of the crossing point, �Ec, given as a fraction of the gap, �G,
and the resonance energy of the transition state, B, which
results from avoided crossing and VB mixing.[21, 35, 39]

While full variation is suitable for the adiabatic curve that
obeys the variational theorem, this may not necessarily be the
case for the diabatic curves. Except for their asymptotic
points, the diabatic curves are not physical states, and
therefore a straightforward variational procedure may result
in a wrong description of the diabatic curve. Thus, in a fully
variational treatment, with a large basis set, the diabatic curve
may try to mimic the full adiabatic and collapse to the ground
state.[40] Many test calculations show that such a problem is
not serious for a moderate basis set, but deterioration is
rapidly incurred with improvement of the basis set; this is
especially pronounced when the basis set includes diffuse
functions. This will create a serious basis set dependence of
the parameters–G, B, and � of the diagram–and this is
precisely what we wish to avoid. The way to solve the problem
is to optimize only the orbitals of the bonded fragment, while
the orbitals of the unbound fragment are kept in their
optimized situation for the free fragment. By following this
procedure, for the H3 system, full variational procedure is
used for R (reactants at the reactant geometry), while atomic
orbitals naturally become the orbitals of P* (reactant at the
product geometry). The computational results shown later
demonstrate that the diabatic curves generated with this
definition are independent of basis sets, and give a consistent
set of parameters G, �, and B.

To avoid artificial bonding interaction between the spin-
paired fragment and the uncoupled one during the VBCI
procedure for the diabatic state (e.g., P*), we use a ™partial∫
CI procedure. Thus, a VBCI calculation is carried out on the
spin-paired fragment by itself, to provide the coefficients of
the participating VB structures. Subsequently, the energy of
the whole system is computed by bringing in the uncoupled
fragment while using the same VB structures and coefficients
as in the spin-paired fragment. Such a technique prevents
undesired bonding interactions from taking place between the
bonded fragment and the uncoupled fragment, which would
have artificially caused the diabatic excited state wave
function to collapse to the adiabatic ground state below it.

Basis sets, geometries, and computational levels : Five differ-
ent basis sets were used for this study: the three Pople basis
sets[41] 6 ± 31G, 6 ± 31G**, and 6 ± 31��G**, and two corre-
lation-consistent ones,[42] cc-pVTZ and aug-cc-pVTZ. Initial-
ly, the geometries used in the VB calculations are taken from
CCSD(T)/aug-cc-pVTZ calculations. Subsequently, geome-
tries are optimized at the VBCISD/aug-cc-pVTZ level. The
Gaussian98 package[43] is used for the MO-based calculations,
while the VB calculations are carried out with the Xiamen
package.[44] The calculations are done at the following VB
levels: VBSCF, L-BOVB, SL-�-BOVB, VBCIS, and VBCISD.

Computational results

To determine the barrier height of the hydrogen exchange
reaction, corresponding results for the H2 molecule are
required. Table 1 shows the bond energy of H2 obtained by
various methods. It can be seen that the VBSCF bond energy
is ca. 94 ± 95 kcalmol�1 and almost independent of basis set.
L-BOVB and VBCIS results do not improve the results
compared with VBSCF. The VBCISD bond energy is slightly
improved from the VBSCF results in the 6 ± 31G basis set. As
the basis set increases, both the SL-�-BOVB and VBCISD
bond energies increase and depart from the VBSCF,
L-BOVB, and VBCIS results. The SL-�-BOVB values reach
about 105 kcalmol�1 in the 6 ± 31G** and 6 ± 311��G**
basis sets, and about 107 kcalmol�1 in the correlation-
consistent basis sets. The VBCISD results are always slightly
better than BOVB, reaching about 106 kcalmol�1 for the 6 ±
31G**/6 ± 311��G**, and converging to about
108.6 kcalmol�1 for the correlation-consistent basis sets. The
larger the basis set, the more significant the BOVB-VBCISD
difference. This is explained by the fact that VBCISD can use
the extra basis functions of the large basis set to account for
angular correlation. This could also be done at the BOVB
level, but only at the price of adding further VB structures. We
note that the VBCISD results are exactly the same as those of
MO-based CCSD(T). This is because, for H2, VBCISD is
indeed a full CI calculation that covers all electron correla-
tions as CCSD(T). Both VBCISD and CCSD(T) results
match the experimentally determined value very well.
Table 2 displays the barriers of the hydrogen exchange

reaction. It is apparent that VBSCF barriers for all basis sets
are too high and do not get significantly lower with basis set
improvement. The BOVB calculations have been restricted to
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the simple L-BOVB level. Some preliminary tests showed
that use of the more sophisticated SL-�-BOVB level did not
change the barriers since it resulted in the same energy
reduction for the (H.

3) transitions state and the (H2 � H .)
reactants. Thus, even at this lower level, the L-BOVB barriers
are much better than those of VBSCF, due to dynamic
correlation imparted by the BOVB method.[22] As noted
before,[24] L-BOVB and VBCIS are approximately equivalent,
and this equivalency is projected both from the total energies
and from the barriers of the twomethods, which are extremely
close. Nevertheless, the L-BOVB and VBCIS barriers are still
higher than the experimental values in small or medium-sized
basis sets, while VBCISD is better and partly compensates for
basis set deficiency. The L-BOVB results are rather sensitive
to the quality of the basis set and gradually improve as the size
of the basis set increases, to reach the fairly accurate value of
10.2 kcalmol�1 in the best basis set. Once again, the VBCISD
barriers are consistently slightly better than BOVB, and reach
the value of 10.0 kcalmol�1 with the correlation consistent
aug-cc-pVTZ basis set. This latter value is in very good
agreement with the value of 9.8 kcalmol�1 derived from
previous MO-based CI methods[14±16] and CCSD(T) calcula-
tions, and with the experimental estimate of 9.8�
0.2 kcalmol�1 cited in [14]. The CCSD(T) method is one of
the most reliable MO-based methods for barrier calculation.
In this respect, not only are the BOVB and VBCISD barriers
in very good agreement with that of CCSD(T), but the total
VBCISD energy at the TS also matches the CCSD(T) result at
the aug-cc-pVTZ level. Thus, valence bond theory clearly

meets the challenge of reproducing the landmark barrier of the
hydrogen exchange reaction.
Table 3 shows the optimized bond lengths of H2 and of H3

at the TS at the BOVB/aug-cc-pVTZ and VBCISD/aug-cc-
pVTZ levels. Again, the BOVB and VBCISD bond lengths
for both the reactants and the transition state are precisely the
same as those derived from CCSD(T), and previous ab initio
values,[14±16] within 0.001 ± 0.002 ä.
Clearly, the above results demonstrate that a properly

designed VBmethod that brings in dynamic correlation in full
can result in accurate estimates of bond energies, bond
lengths, and–most importantly–of a reaction barrier. This
successful calculation of the barrier is not an isolated event,
and occasionally one does not even need a large basis set as in
the hydrogen exchange reaction. Table 4 displays central
barriers for identity SN2 reactions [Eq. (7)].

X:� � CH3�X � X�CH3 � :X� (7)

These barriers are calculated with the 6 ± 31G* basis set for
X�F, Cl, or its effective core potential equivalent,
LANL2DZ* for Br and Cl. In the CCSD(T) method all
electrons are correlated, while in the VBCISD method only
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Table 2. The barriers of the hydrogen exchange reaction.

Basis set Method E(H3) (a.u.)E(H2�H) (a.u.)Barrier (kcalmol�1)
6 ± 31G VBSCF � 1.60481 � 1.64450 24.9

L-BOVB � 1.61471 � 1.64451 18.7
VBCIS � 1.61428 � 1.64451 19.0
VBCISD � 1.62160 � 1.64992 17.8
CCSD(T) � 1.62625 � 1.64992 14.9

6 ± 31G** VBSCF � 1.60705 � 1.64750 25.4
L-BOVB � 1.62086 � 1.64769 16.8
VBCIS � 1.62044 � 1.64779 17.2
VBCISD � 1.63827 � 1.66338 15.8
CCSD(T) � 1.64275 � 1.66338 12.9

6 ± 31��G**VBSCF � 1.61267 � 1.65027 23.6
L-BOVB � 1.62694 � 1.65067 14.9
VBCIS � 1.62729 � 1.65077 14.7
VBCISD � 1.64775 � 1.66819 12.8
CCSD(T))� 1.65048 � 1.66819 11.1

cc-pVTZ VBSCF � 1.61275 � 1.65062 23.8
L-BOVB � 1.62925 � 1.65103 13.7
VBCIS � 1.62819 � 1.65123 14.5
VBCISD � 1.65451 � 1.67215 11.1
CCSD(T) � 1.65619 � 1.67215 10.0

aug-cc-pVTZ VBSCF � 1.61804 � 1.65081 20.6
L-BOVB � 1.63485 � 1.65115 10.2
VBCIS � 1.63149 � 1.65130 12.4
VBCISD � 1.65655 � 1.67246 10.0
CCSD(T) � 1.65689 � 1.67246 9.8

Table 3. The geometries of H2 and H3 at the TS with aug-cc-pVTZ basis set
[ä].

Method R(H2) R(H3)

BOVB 0.743 0.932
VBCISD 0.743 0.932
CCSD(T) 0.743 0.931
experimental[46] 0.741 0.930

Table 1. The bond energy of H2 by various methods

Basis set Method E(H2) (a.u.) E(H�H) (a.u.) D [kcalmol�1]

6 ± 31G VBSCF � 1.14627 � 0.99647 94.0
L-BOVB � 1.14627 � 0.99647 94.0
VBCIS � 1.14628 � 0.99647 94.0
VBCISD � 1.15169 � 0.99647 97.4
CCSD(T) � 1.15169 � 0.99647 97.4

6 ± 31G** VBSCF � 1.14926 � 0.99647 95.9
L-BOVB � 1.14946 � 0.99647 96.0
SL-�-BOVB � 1.16452 � 0.99647 105.5
VBCIS � 1.14955 � 0.99647 96.1
VBCISD � 1.16514 � 0.99647 105.8
CCSD(T) � 1.16514 � 0.99647 105.8

6 ± 311��G** VBSCF � 1.15045 � 0.99964 94.6
L-BOVB � 1.15085 � 0.99964 94.9
SL-�-BOVB � 1.16758 � 0.99964 105.4
VBCIS � 1.15096 � 0.99964 95.0
VBCISD � 1.16838 � 0.99964 105.9
CCSD(T) � 1.16838 � 0.99964 105.9

cc-pVTZ VBSCF � 1.15080 � 0.99962 94.9
L-BOVB � 1.15121 � 0.99962 95.1
SL-�-BOVB � 1.69968 � 0.99962 106.9
VBCIS � 1.15142 � 0.99962 95.3
VBCISD � 1.17234 � 0.99962 108.4
CCSD(T) � 1.17234 � 0.99962 108.4

aug-cc-pVTZ VBSCF � 1.15098 � 0.99964 95.0
L-BOVB � 1.15133 � 0.99964 95.2
SL-�-BOVB � 1.17078 � 0.99964 107.4
VBCIS � 1.15148 � 0.99964 95.3
VBCISD � 1.17264 � 0.99964 108.6
CCSD(T) � 1.17264 � 0.99964 108.6

experimental[45] 109.5
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the four valence electron pairs, which have �-symmetry with
respect to the X-C-X axis, are correlated. Nevertheless, the
VBCI barriers are close to the CCSD(T) data and to earlier
G2(�) data.[47]
Bonding energies of the dihalogen molecules pose difficult

test cases, and require high levels of CI in MO-based
theory.[22f] Table 5 displays a sample of bond energies calcu-

lated at the VBCISD level by use of moderate basis sets and
only the three classical structures–one covalent and two
ionic. Alongside these quantities we present the bond
energies calculated with the coupled cluster method
CCSD(T). Quite large basis sets are normally required for
such molecules to approach the experimentally measured
bonding energies, and the CCSD(T) results vary from poor to
quite good as the size of the basis set is increased. The VBCI
method, with merely the three classical structures, follows the
same behavior and yields bonding energies with an accuracy
comparable to that of the extensive MO-based CCSD(T)
method. The ability of the BOVB method to yield good
bonding energies has also proved satisfactory, as discussed in
previous papers.[22]

Valence bond state correlation diagrams (VBSCDs)

Having demonstrated that VB theory can lead to correct
barrier data, we now turn to analysis of the origins of this
barrier, in order to emphasize the second aspect of VB theory:
its conceptual lucidity. Table 6 shows the VB-computed
parameters of the VBSCD (Figure 1).[21]

It can be seen from the table that the promotion gap,G, the
height of the crossing point, �Ec, and the curvature param-
eter, �, are virtually independent of the VB method. The
promotion gap G converges at the VBSCF/BOVB levels to
164.2 ± 164.0 kcalmol�1 and is almost independent of basis
sets. However, at the VBCISD levels, the value of G is
somewhat higher and converges quickly to 177.0 kcalmol�1.
This value is close to a theoretical estimate–
182.7 kcalmol�1–based on the approximate formula that
relates the promotion gap to the singlet-to-triplet excitation
energy of the ground state H�H bond [Eq. (8)].[35, 39]

G	 0.75�EST (8)

This equation, the derivation of which was elaborated in
previous treatments of the VBSCD,[35, 39] is a good approx-
imation to G. However, a precise estimate of G is given in
Equation 7, as the average of the singlet-to-triplet excitation
and the corresponding bond energy [Eq. (9)] where D is the
bond energy of H2. Using this equation and the computed
values for these physical quantities, one obtains G�
176.5 kcalmol�1, which shows a perfect agreement with the
VBCISD/aug-cc-pVTZ result. This gives us confidence in the
other reactivity factors.

G� 0.5 (�EST � D) (9)

The height of the crossing point, �Ec, is approximately
constant: about 62.7 ± 65.2 kcalmol�1 for the VBSCF/BOVB
methods and 63.9 ± 68.1 kcalmol�1 for the VBCISD method.
These values are again close to the semiempirical estimate of
this quantity, 61.5 kcalmol�1, as a sum of the bond distortion
energy (�D�) and the averaged triplet repulsion across the
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Table 4. Central barriers for identity SN2 reactions X� � CH3X�
XCH3 � X� (kcalmol�1)

Method F Cl Br I

VBCISD 13.3 14.2 12.2 11.6
CCSD(T) 11.2 13.6 10.4 9.2
G2(�) 11.6 13.2 10.8 9.6

Table 5. Bond energies calculated with CCSD(T)[a] and VB methods
[kcalmol�1].

Molecule/Basis De[CCSD(T)] De[VBCISD]

Cl�Cl (LANL2DZ) 39.35
Cl�Cl (6 ± 31G*) 40.52 41.55
Cl�Cl (6 ± 311G*) 39.96 40.38
Cl�Cl (cc-pVDZ) 41.78 45.02
Cl�Cl (cc-pVTZ) 52.08 56.12
Cl�Cl (cc-pVQZ) 55.90
Cl�Cl (cc-pV5Z) 58.09
Exp. 57.8
F�F (6 ± 31G*) 32.84 32.25
F�F (6 ± 311G*) 26.80 29.75
F�F (cc-pVDZ) 27.14 28.46
F�F (cc-pVTZ) 34.76 36.12
F�F (cc-pVQZ) 36.64
F�F (cc-pV5Z) 37.48
Exp. 38.3
Br�Br (LANL2DZ) 41.06
Br�Br (6 ± 31G*) 41.18 44.09
Br�Br (cc-pVDZ) 41.35
Br�Br (cc-pVTZ) 47.97 49.99
Br�Br (cc-pVQZ) 51.74
F�Cl (6 ± 31G*) 50.23 49.31
F�Cl (cc-pVDZ) 43.17 45.61
F�Cl (cc-pVTZ) 55.0 58.84
F�Cl (cc-pVQZ) 59.18
F�Br (6 ± 31G*) 52.20 52.48
Cl�Br (6 ± 31G*) 41.84 43.89

[a] CCSD(T) calculations were done with frozen core approximation.

Table 6. VB parameters of H3 [kcalmol�1].

Basis set Method �E* �Ec B G f

6 ± 31G VBSCF 24.9 62.7 37.8 163.3 0.38
L-BOVB 18.7 62.7 44.0 163.3 0.38
VBCISD 17.8 63.9 46.2 166.7 0.38

6 ± 31G** VBSCF 25.4 64.0 38.6 165.9 0.39
L-BOVB 16.8 64.0 47.1 166.0 0.39
VBCISD 15.8 66.8 51.0 175.8 0.38

6 ± 311��G** VBSCF 23.6 64.9 41.3 163.6 0.40
L-BOVB 14.9 64.9 50.0 163.9 0.40
VBCISD 12.8 67.7 54.9 174.9 0.39

cc-pVTZ VBSCF 23.8 64.9 41.1 163.8 0.40
L-BOVB 13.7 64.9 51.3 164.1 0.40
VBCISD 11.1 68.0 57.0 177.7 0.38

aug-cc-pVTZ VBSCF 20.6 65.1 44.5 164.0 0.40
L-BOVB 10.2 65.2 54.9 164.2 0.40
VBCISD 10.0 68.1 58.1 177.6 0.38
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short Ha ¥¥ ¥ Hb and long Ha ¥¥ ¥ Hc distances in the TS
[Eq. (10)].[39]

�Ec � �D�� 0.5 [3E(a,b)�� 3E(a,c)�] � �G (10)

Since the factor � is simply the ratio �Ec/G, and neither
quantity varies much, this factor itself is approximately
constant (ca. 0.38 ± 0.40), in agreement with results of other
identity hydrogen abstraction reactions,[35] as well as with a
semiempirical estimate of this quantity.[35]

What appears to make the barrier in Table 6 so small is B,
the resonance energy of the transition state, which varies from
37.8 at the VBSCF level with the smallest basis set, all the way
to 57.1 ± 58.0 kcalmol�1 at the VBCISD level with the
correlation consistent basis sets. It therefore seems that the
resonance energy of the transition state is optimum when
dynamic electron correlation is accounted for in a precise
manner. The value of B is extremely close to the semi-
empirical estimate of B, as one half of the bond energy of the
ground state molecules [Eq. (11)].

B � 0.5D (11)

By use of the bond energy calculated in Table 2, the
estimated value of B is 54.5 kcalmol�1, in good agreement
with the best VBCISD values. A previously recommended
simple expression for the barrier, Equation (12), gives a
barrier of 12.5 kcalmol�1, which is not a bad estimate.

�E � �G� 0.5D ; � � 0.38 (12)

Moreover, this equation, based on the VBSCD model,[21]

provides a very clear mechanism for barrier formation; the
barrier is a balance between, on the one hand, the total
deformation and repulsion energies, required to achieve
resonance between the reactant and product boding schemes,
and on the other hand, the resonance energy lowering due to
the delocalization of the electrons, which are reorganized
during the transformation.

Conclusion

The calculation of the barrier for the hydrogen exchange
reaction[14] in the 1970s constituted a landmark achievement
of quantum chemistry and specifically of MO-based methods
that include electron correlation. In this paper we report an
accurate calculation of this barrier by use of recently
developed VB methods, BOVB and VBCI, that incorporate
the necessary dynamic correlation. As expected for any well
behaved computational method, the VB barriers are too high
when small basis sets are used and gradually converge to the
experimentally determined or best MO-based values as the
quality of the basis set is increased. In our case the VB
convergence is rather fast and occurs in a medium-sized basis
set, aug-cc-pVTZ. This is achieved with VB wave functions
that deal with only the eight classical VB structures. With the
BOVB method, the wave function is extremely compact, as
each VB structure is described by the appropriate determi-

nant spin eigenfunction. In the VBCI framework, each VB
structure is described by several spin eigenfunctions, which
are condensed into a single structure. In that sense, the VBCI
wave function should be regarded as a function that deals with
a minimal set of VB structures, eight in the current case, that
are dressed with dynamic correlation. As such, VBCI does not
lose any advantage relative to BOVB and even tends to be
more accurate in medium-sized basis sets. Both the BOVB
and VBCI methods, while for the moment still being
computationally more costly than, for example, CCSD(T),
are suitable for the calculation of diabatic states and for the
many applications that are specific to VB.
To the best of our knowledge, this work is the first accurate

VB barrier that matches an experimental value. This is a proof
of principal that VB theory with appropriate accounting for
dynamic electron correlation can achieve quantitative accu-
racy of reaction barriers, and still retain a compact and ™very
chemical∫ wave function. The sample of SN2 barriers shows
that this is not an isolated case.
In addition, the paper presents a new strategy for comput-

ing diabatic energy curves that are independent of the basis
set. This enables the generation of quantitatively accurate VB
state correlation diagrams (VBSCD). Thus, the VB method
can attain high accuracy and still retain relatively simple and
straightforward interpretability. In this respect, while an-
nouncing the coming of age of VB theory is still somewhat
premature, this event is certainly within close reach.
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